
Recovering Dynamic 3D Sketches from Videos

Jaeah Lee Changwoon Choi Young Min Kim Jaesik Park*

Seoul National University, Republic of Korea
hayanz@snu.ac.kr changwoon.choi00@gmail.com {youngmin.kim, jaesik.park}@snu.ac.kr

Abstract

Understanding 3D motion from videos presents inher-
ent challenges due to the diverse types of movement, rang-
ing from rigid and deformable objects to articulated struc-
tures. To overcome this, we propose Liv3Stroke, a novel
approach for abstracting objects in motion with deformable
3D strokes. The detailed movements of an object may be rep-
resented by unstructured motion vectors or a set of motion
primitives using a pre-defined articulation from a template
model. Just as a free-hand sketch can intuitively visualize
scenes or intentions with a sparse set of lines, we utilize
a set of parametric 3D curves to capture a set of spatially
smooth motion elements for general objects with unknown
structures. We first extract noisy, 3D point cloud motion
guidance from video frames using semantic features, and
our approach deforms a set of curves to abstract essen-
tial motion features as a set of explicit 3D representations.
Such abstraction enables an understanding of prominent
components of motions while maintaining robustness to en-
vironmental factors. Our approach allows direct analysis of
3D object movements from video, tackling the uncertainty
that typically occurs when translating real-world motion
into recorded footage. The project page is accessible via:
https://jaeah.me/liv3stroke_web.

1. Introduction

Tracking 3D movement in video is subject to inherent ambi-
guity. The 3D motions usually exhibit various forms, includ-
ing unidentified rigid, deformable, and articulated objects.
A video footage observes the 3D motions that are projected
onto 2D frames of a moving camera, which further compli-
cates the process of extracting motion components. There
have been attempts to understand locally smooth motion pat-
terns, such as motion factorization [31] or segmentation [46].
Recent approaches on novel-view synthesis extend the radi-
ance field formulation into a more general form of dynamic
scenes with dense motion fields [25, 34, 44, 47]. However,
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Figure 1. Liv3Stroke is a novel approach that compactly represents
object movements using deformable 3D strokes from videos. Our
method achieves view-consistent dynamic sketch reconstruction by
shifting and deforming the shape of each stroke.

this formulation solves for complex high-dimensional vari-
ables given an under-constrained set-up, and often produces
erroneous results that are further deteriorated when the scene
is subject to appearance variations.

We find the key insights to express 3D motion through
abstraction in the form of sketches. Sketches serve as effec-
tive tools for compactly visualizing scenes or ideas [10, 11].
While they are subjective expressions, often created by an
artist, recent works [41, 42] have shown that we can gen-
erate sketches directly from images guided by visual fea-
tures. They define a perceptual loss in a latent space in-
corporating deep neural networks and successfully generate
abstract sketches. Interestingly, the perceptual loss allevi-
ates enforcing pixel-wise matches in image space, and it
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robustly extracts meaningful features even under ambiguous
situations without precise alignment. Inspired by this, sub-
sequent works incorporate similar formulations to retrieve
view-consistent structural information in 3D [5] or compact
representation for dynamic videos [8, 50]. Likewise, we
propose that deformable sketch lines can be a flexible yet
compact parameterization representing the arbitrary topol-
ogy of locally smooth 3D motions in videos.

Meanwhile, 3D strokes have the potential to describe the
dense field. We can express a 3D concept in a sparse and
abstracted form as a wire-like structure [36, 40]. Starting
from this property, there have been attempts to apply 3D
curves in sketch-based modeling [28] or surface editing [48]
to depict intended details. Different from these works, we
focus on the “deformability” of each stroke, which enables
effectively capturing 3D key features of diverse movements.

To align sketches with dynamic scenes, we define a sketch
as a set of deformable 3D strokes and utilize vectorized
curves (cubic Bézier curves) for the expression. Using the
editing capabilities of vector graphics, we can effectively
convey movements by shifting stroke positions and their
control points. Before reconstructing moving sketches, we
compute a dense guiding motion field since it is challenging
to directly align strokes with input video frames. We first
reconstruct 3D motion guidance, which is a dynamic point
cloud with a deformation network. We propose to optimize
motion guidance with rendering loss in perceptual space.
This guidance serves as a rough initial 3D motion and loca-
tion for dynamic 3D strokes. Based on this approach, we
fit 3D strokes into movements. We represent motions by
individually relocating each curve and adjusting its control
points. We minimize the gap between stroke deformation
and motion through a coarse-to-fine approach, which enables
us to maintain the core shape throughout the movement.

We show its performance in intuitively expressing smooth
motion from video frames. Our approach enables to draw
core view-consistent object motions in 3D space, and can
capture the object’s overall shape throughout the entire video
sequence while being robust to external factors. We present
that our approach can render diverse movements, even if
capturing 3D motion from videos is challenging due to the
difference between the velocity of camera movements and
motions [9].

To summarize, we introduce the following contributions:

• We propose Liv3Stroke, which is the first approach to
reconstruct dynamic sketches in 3D space and abstract
movements with sparse strokes.

• We define each stroke of the sketch by Bézier curves, and
motions are represented by changing each curve’s location
or shape.

• Our approach can concisely express core structures and
motions from natural videos, including monocular video
with moving camera poses.

• Our approach draws view-consistent object motions in
3D space and captures their key features while being less
affected by environmental factors.

2. Related Work
Dynamic 3D Scene Reconstruction The emergence of
neural radiance fields [29] has catalyzed significant advance-
ments in photorealistic 3D reconstruction from multi-view
images. Spontaneously, there have been attempts for dy-
namic scene reconstruction in 3D space. Fridovich et al. [7]
and Cao and Johnson [4] represent dynamic 3D scenes by
Eulerian motion field defined in a space-time 4D grid. Also,
there are some works [13, 14, 16, 21, 35, 45] using tem-
plate model that is specialized in specific objects, such as a
parametric human model.

Meanwhile, most existing works [24, 27, 32–34] follow
a common pattern; they reconstruct dynamic 3D scenes by
optimizing canonical 3D scenes and warp them by learnable
deformation fields. Our method follows a similar approach
yet focuses on concisely representing motions in 3D space.
We aim to recover dynamic sketches by learning the defor-
mation of strokes at each timestep.

Stroke-Based Representation Stroke-based representa-
tion expresses scenes with a few strokes. It is one of the
simplest sketch representations yet effective in conveying
the essential structures and semantics of target objects. There
are learning-based methods to synthesize sketches from im-
ages [30] by training neural networks on limited image-
sketch paired datasets. Optimization-based methods [41, 42]
utilize strong prior vision language model [37], and they
enable the generation of sketches without training on spe-
cific classes. Recently, some works have tackled extending
stroke-based representation to the video domain. Gal et
al. [8] try to animate sketches given a text prompt, and
Zheng et al. [50] reconstruct abstract dynamic 2D sketches
from videos. Furthermore, 3Doodle [5] and EMAP [22]
reconstruct 3D strokes from multi-view images, enabling
better representation of 3D shapes compared to 2D strokes.
However, these works are still limited since they mainly
target stationary scenes.

In this paper, we aim to reconstruct motions as sketches
in 3D space. We capture dynamic motions from videos by
positioning and deforming view-consistent strokes.

3. Method
In this section, we explain how to convey motions with 3D
strokes. Our overall method is shown in Fig. 2. We introduce
our compact sketch representation for motion abstraction in
Sec. 3.1, and Sec. 3.2 details the process of guiding rough
motions in 3D space. Based on the motion guidance, we
describe dynamic sketches through the process described in
Sec. 3.3.
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Figure 2. Method overview. We first learn 3D motion guidance from video frames, which are defined as a set of point cloud. Based on this,
we can initialize approximated stroke position and motions. We represent movement by transforming each individual stroke through rotation
R and translation T , and adjusting its control points {pi} with displacement {∆pi}, thereby reconstructing a dynamic 3D sketch S3D.

3.1. Sketch Representation

We define a sketch as n black strokes on the white back-
ground. Each stroke is represented as a 3D cubic Bézier
curve, which is defined with four control points si =
{pji}3j=0, pji ∈ R3. To simplify the process, we use fully
opaque sketch lines (i.e., fix the opacity as 1), and only adjust
the position of control points.

When we project a 3D Bézier curve to the image plane,
the represented spline is a 2D rational Bézier curve. How-
ever, by assuming that the camera is located sufficiently far
from the target object, resulting in negligible perspective
distortion, the perspective projection can be approximated as
orthographic projection following [5]. Hence, we can con-
sider the projected curve as a general 2D Bézier curve, and
use an existing 2D differentiable rasterizer [23] R to render
the projected curves. Each sketch frame S is mathematically
expressed as follows:

S = R(Ψ(S3D,M,K)), (1)

where Ψ denotes the projection to a 2D image plane with the
extrinsic matrix M and the intrinsic matrix K, and S3D =
{si}ni=1 is the 3D sketch defined by a set of curves. Then,
we represent the interested object’s movements by shifting
each curve and its control points.

3.2. Learning 3D Motion Guidance

While existing dynamic scene reconstruction methods target
dense photorealistic representation through direct optimiza-
tion, our goal of compact abstraction demands understanding
of the object’s essential structure and motion patterns, which
cannot be solved by a simple transfer from dense represen-
tation. Hence, we first compute approximated 3D motion
guidance using low-resolution images. This then helps us
determine how the strokes should be located, move, and flow.
The detailed framework of this stage is shown in Fig. 3.

We represent the scene using a point cloud {Pi} due to
their efficiency and ease of manipulation. The motion in the
scene is then visualized through the movement of these point
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Figure 3. Framework for outlining 3D motion. To get the motion
layout, we use a 3D point cloud and compute movements by repo-
sitioning its points. An MLP acts as the function that estimates
motion {∆Pi} across the provided video frames.

cloud elements. Like the prior work [34], we implement an
MLP-based deformation network that takes time and position
encodings as input to estimate spatial deformations at each
time step. We use the same positional encoder as in [29]
where γ(p) = (sin(2lπp), cos(2lπp))L−1

l=0 . The projected
point is rasterized as a black Gaussian unit. We describe the
details of the rasterization process in Appendix.

Meanwhile, we cannot directly compare a projected im-
age J with the corresponding RGB frame I since the ren-
dered ouput J is an image intensity, as shown in Fig. 3, not
a natural image as I. Therefore, instead of using pixel-wise
loss, we utilize LPIPS loss [49] to get perceptual alignment
quality and assess the structural difference:

Lg
frame = ρ(LPIPS(I,J ), α, c), (2)

where I and J are the training image and a rasterized point
cloud. ρ(x, α, c) is a robust function [2] that stabilizes the
optimization process by reducing the impact of outliers. The
parameters α and c are set to 1 and 0.1, respectively.
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Figure 4. Comparison of loss functions. Compared to pixel-wise
losses (L2 and L1 function), LPIPS loss provides stricter structural
guidance when computing differences between two images, even
with RGB frames.

As shown in Fig. 4, LPIPS loss preserves the structural
integrity of the cactus better than L1 or L2 loss. While
they produce noisy and scattered representations even with
grayscale frames, LPIPS maintains clearer object boundaries
and more coherent shape details directly from images.

To achieve smooth motion, we introduce two regulariza-
tion terms in Sec. 3.2 and Sec. 3.3: a velocity continuity
term that ensures stable transitions and a shape stability term
that prevents excessive deformation. The former is defined
as:

Lg
temp = ∥∆P t

3D −∆P t′

3D

t− t′
∥2, (3)

where t′ is a neighboring time step of t, randomly sampled
within the range [t− dt, t] with dt representing the temporal
interval between adjacent frames, and {∆P t

3D} is changes
of point locations at time step t.

For the latter, we need stronger constraints in this step
compared to drawing sketches (Sec. 3.3) since we aim to
get a “dense” motion field. Hence, we use L1 loss to ensure
a more stable shape throughout the entire sequence. We
compute the rigid transformation between time step t and t′,
then compute the following regularization term:

Lrigid = ∥qRt→t′ − qI∥1 + ∥Tt→t′∥1, (4)

where Rt→t′ ∈ SO(3) and Tt→t′ ∈ R3 denote the rigid
rotation and translation, respectively. We use the well-known
algorithm described in [3] and [12] to compute these terms.
The expression qM is a corresponding quaternion of the
matrix M ∈ SO(3) to avoid gimbal lock [38]. The overall
objective function is as follows:

Lguidance = ωfLg
frame + ωtLg

temp + ωrLrigid. (5)

Following this approach, we can get the hint of 3D move-
ments and initialize canonical stroke locations, i.e., positions
before deformation. We further discuss the effect of this
obtained guidance in Sec. 4.3.

3.3. Drawing Dynamic Sketches

Based on the extracted motion guidance, we draw motions
with 3D strokes by learning the canonical stroke positions

(i.e., locations before shifting by the framework) and their
deformations. Figure 5 shows the overall pipeline to recon-
struct dynamic sketches from input video frames.

Before drawing a moving sketch, we load the guided mo-
tion field learned in Sec. 3.2. To initialize curves, we sample
points via FPS from the outlier-filtered point cloud at t = 0
as the first control points. These points serve as reference
markers (i.e., indices) of each curve, and we use their posi-
tional encodings as the input of the transformation networks
MR and MT for stroke-wise deformation, along with tem-
poral encodings. The remaining control points are generated
progressively by adding a base radius (e.g. r = 0.02 for
squat scene) plus random offsets, maintaining a minimum
distance (δ = 1.0× 10−3) between consecutive points. We
initialize MT using the weights from our previously trained
MLP (described in Sec. 3.2), since both networks handle
per-stroke translation.

We model stroke movements as the composition of two
components: (1) per-stroke rigid transformations controlling
position and orientation and (2) control point adjustments
that manage shape changes. Each component is computed
through its corresponding MLP. The rotation Rt

i ∈ SO(3)
and translation T t

i ∈ R3 of the i-th stroke at the time step t
is computed as follows:

Rt
i = ζ(MR(γ(Pi), γ(t))), T

t
i = MT(γ(Pi), γ(t)) (6)

where γ(·) indicates the positional encoder as in Sec. 3.2,
and ζ(·) represents the conversion of angles from quaternion
to rotation matrix. Then, each control point of the stroke is
transformed as qtji = Rt

ip
j
i + T t

i where si = {pji}. Using
these relocated strokes, we compute the changes in control
point positions {∆pt

j
i} as the following equation to deform

each curve’s control points:

∆pt
j
i = ML(γ(q

tj
i ), γ(t)), (7)

where ML is another network to compute additional changes
of each control point. This optimization process employs
a coarse-to-fine approach to efficiently capture global and
local features. Initially, the method operates at low reso-
lution to identify the overall structure and key patterns by
learning MR and MT in the coarse stage. As the resolution
increases, we train ML to capture finer details in the fine
stage progressively. The canonical location of control points
{pji} are optimized throughout all stages.

The final 3D sketch at the time step t is:

St
3D = S0

3D + ξ(∆St
3D), (8)

where S0
3D is the canonical state and ∆St

3D represents the ac-
cumulated changes throughout the framework. The function
ξ(x) = x

1+exp(−a(|x|−b)) , with constants a and b, suppresses
small movements during static periods. We demonstrate the
effect of this correction in Appendix.
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Figure 5. Pipeline for rendering sketches. We extract the motion as sketches by learning the deformation of each stroke. To achieve this, we
separate stroke motions as (1) per-stroke transformations, which are composed of rotation Ri and translation Ti and (2) shifting each control
point of the stroke {∆pji}. We use MLPs, MR, MT, and ML, as the function of deformation at the given time step.

We use the following perceptual loss in the whole
process since we need semantic understanding to convey
sketches [41], which is the same as 3Doodle [5]:

Ls
frame = λsρ(LPIPS(I,S), α, c) + dist(CLIP(I),CLIP(S)),

(9)
where CLIP(·) symbolizes extracted from CLIP [37] image
encoder and dist(x, y) = 1 − x·y

∥x∥·∥y∥ indicates the cosine
distance. We adopt the same parameter values (α = 1 and
c = 0.1) of the robust function ρ as in Sec. 3.2.

As mentioned in Sec. 3.2, we additionally use regular-
ization terms to enhance quality. For velocity continuity,
we define the following objective function with the overall
changes ∆St

3D:

Ls
temp = λt∥

∆St
3D −∆St′

3D

t− t′
∥2, (10)

where t′ is a a neighboring time step of t as same in Eq. 3.
The other term for stabilized structure is as follows:

Lreg =

{
λr(∥qRi − qI∥2 + ∥Ti∥2), if coarse stage
λl∥∆pji∥2, otherwise

(11)
where Ri and Ti are the per-stroke rotation and translation,
and ∆pji is the local movement of the control point computed
by ML. In addition, qM denotes the quaternion representa-
tion of the matrix M , as mentioned in Sec. 3.2.

Finally, we draw the motion as sketches using the follow-
ing objective function:

Lsketch = Ls
frame + Ls

temp + Lreg. (12)

We further discuss the effect of each term in Sec. 4.3.

4. Experiment
Implementation Details We optimize all networks and
sketch parameters using Adam optimizer [20]. Moreover,

in Sec. 3.2, we learn motion guidance starting from a point
cloud with 10k points. We assign values for Eq. 5 as ωf =
0.1, ωt = 0.05, and ωr = 1.0 × 10−4. Similarly, for the
equations in Sec. 3.3, we set the following parameters to
each term of the objective function: λs = 0.01 for Eq. 9,
λt = 0.01 for Eq. 10, and λr = λl = 1.0× 10−3 for Eq. 11.
Moreover, we set a = 100 and b = 0.05 for the correction
function ξ(·) in Eq. 8. Our perceptual distance in Eqs. (2)
and (9) employ VGG16 model for LPIPS loss [49]. We
also use features from a pretrained RN101 model of CLIP
encoder [37] for Eq. 9 in sketch synthesis. Users can control
the level of detail by setting the number of strokes. More
implementation details can be found in the Appendix.

Datasets The inputs are video frames capturing moving
objects from a non-stationary camera, along with viewpoints
and timesteps. Since the D-NeRF [34] dataset lacks camera
motion, we rendered a new synthetic dataset with a con-
sistent camera trajectory. Each scene includes 100 frames
with ground-truth camera parameters and images, and all
viewpoints are on an upper hemisphere enclosing the tar-
get objects. We also evaluate our model on the real-world
scenes from [17], [26], and [32], videos where the camera
captures the object while in motion.

Baselines To the best of our knowledge, we are the first to
abstract objects in motion as sketches in 3D space. Hence,
we mainly assess our results by comparing with three base-
line methods with varying input/output stroke representa-
tions. Two of them aim to generate 2D sketches. CLI-
Passo [41] create an abstract sketch with 2D strokes from a
single image, and Zheng et al. [50] introduce a framework
that generates dynamic sketches from videos. On the other
hand, Suggestive Contours [6] derives capture geometric con-
tour features from 3D mesh. Since we have only a 2D video
sequence, we first extract meshes using the state-of-the-art
dynamic mesh reconstruction [26] for this baseline.
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Method Strcutural alignment (↑) Motion prompt similarity (↑)
Novel views Fixed views Novel views Fixed views

CLIPasso 0.760± 0.107 0.740± 0.127 0.659± 0.007 0.664± 0.011
Sketch Video Syn. 0.663± 0.115 0.657± 0.135 0.654± 0.011 0.658± 0.011
Sugg. Contours 0.784± 0.102 0.750± 0.119 0.661± 0.013 0.656± 0.016

Liv3Stroke (Ours) 0.693± 0.096 0.683± 0.108 0.656± 0.006 0.656± 0.008

(a) Quantitative results of dynamic 3D sketches.

Method
Per-frame

Chamfer (↓)
Motion velocity

distance (×10−3) (↓)

4DGS 0.205± 0.046 4.60± 3.00
Deformable 3DGS 0.302± 0.170 5.05± 4.06
SC-GS 0.294± 0.055 4.21± 2.75
DG-Mesh 0.277± 0.059 4.10± 2.70

Liv3Stroke (Ours) 0.252± 0.049 4.16± 2.34

(b) Quantitative results of 3D guidance accuracy.

Table 1. Overall quantitative results. (a) Quantitative metrics on sketch video frames. We evaluate structural alignment score with edge
images of referenced frames and CLIP feature-based motion prompt similarity. (b) Quantitative results of 3D guidance accuracy. Our
approach can capture meaningful 3D motion information as the point cloud sequence, even though we do not pursue realistic scenes.

Additionally, we compare GS-based [19] dynamic scene
reconstruction works [15, 26, 44, 47] to check how well the
output describes the motion. Note that DG-Mesh [26] aims
to extract mesh starting from Gaussian splatting techniques,
while the others mainly focus on realistic dynamic scene
reconstruction in 3D space.

4.1. Quantitative Results

We provide quantitative results of sketch videos in Tab. 1
(a). In this table, we evaluate how well the sketch preserves
the overall structure and the desired movement. We evaluate
both aspects from novel camera trajectories and fixed view-
points. For structure preservation, we employ MS-SSIM [43]
metrics between generated sketch frames and their corre-
sponding reference edge views, which are extracted from
PiDiNet [39]. For motion expression quality, we compute
CLIP [37] feature similarities between each frame and the
text prompt structured as “A sketch of {movement}”, and
normalize values to [0, 1]. Note that we use ViT-B/32 [1]
models in this evaluation, which remain independent from
our optimization pipeline to ensure unbiased evaluation.

We observe that our approach has the smallest deviations
in both scenarios, showing that Liv3Stroke can consistently
capture the structure throughout the whole input sequence.
Sketch Video Synthesis achieves the lowest scores in this val-
idation since it mainly focuses on depicting detailed features
rather than capturing the whole movement. While CLIPasso
performs well in this validation, its higher deviations show
that it lacks consistency in structure throughout the sequence.
Similarly, Suggestive Contours achieve the highest scores,
as it tend to generate outline contours as illustrated in Fig. 6.
We further discuss about this in Sec. 4.2.

In motion prompt similarity scores, Liv3Stroke achieves
consistent scores with the smallest deviation in both novel
camera trajectory and fixed viewpoint scenarios compared
to other approaches. This demonstrates that our approach
maintains stable performance in motion expression while
being robust to varying camera viewpoints. Furthermore,
Sketch Video Synthesis achieves the lowest score in the
camera-moving scenario compared to the second-highest

score when the camera is stationary. This is because they
are dependent on layered neural atlas [18], which cannot
represent big movements.

We also evaluate motion guidance performance described
in Sec. 3.2. Table 1 (b) presents motion accuracy compar-
isons between GS-based dynamic approaches [15, 26, 44,
47] and our method, measured on our synthetic dataset. Us-
ing point clouds extracted from mesh at each time step as
ground truth, we assess the performance through two metrics:
(1) per-frame structural accuracy measured by Chamfer dis-
tance between point clouds and (2) motion velocity accuracy
calculated by L2 loss between ground truth and predicted
point position changes at each time step. Although 4DGS
achieves better per-frame structural accuracy scores than
ours, their overall structure deteriorates as shown in Fig. 7.
We discuss this phenomenon further in Sec. 4.2.

Meanwhile, Liv3Stroke performs similarly to DG-Mesh
but with fundamentally different objectives. While DG-
Mesh focuses on precise mesh reconstruction, Liv3Stroke
aims for efficient motion capture by simply repositioning
point clouds to obtain approximate 3D motion information.
This distinction in goals highlights the efficiency of our
approach since we achieve similar quantitative results despite
using a simpler approach focused on motion rather than
detailed geometry.

4.2. Qualitative Results

We provide the qualitative results of our sketches in Figs. 1
and 6. In Fig. 6 (a), we compare our method against existing
baselines under both fixed viewpoints and novel camera
trajectories.

From these scenarios, our method exhibits several key
advantages. CLIPasso demonstrates inconsistent structural
details and unstable stroke placements across all scenar-
ios. While Sketch Video Synthesis achieves better temporal
coherence from fixed viewpoints, it struggles to maintain
structural integrity during camera motion. These limitations
stem from their primary focus on 2D synthesis, resulting
in an insufficient understanding of 3D motions. Further-
more, it struggles with the lego scene in Fig. 6 (a), as it
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(a) Qualitative comparison of diverse sketch synthesis works

(b) Results under changing light conditions (c) Qualitative results of real-world scenes
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time time

Figure 6. Qualitative results of sketches. (a) Comparison with baselines. Our approach can generate sketches with view-consistent motions
from RGB frames simply by locating and deforming each stroke. Note that Suggestive Contours [6] requires the input mesh, hence
cannot capture motions directly from videos. (b) Liv3Stroke also can represent 3D movements even when RGB values change due to the
surrounding environment. (c) Results of real-world scenes. Our approach successfully captures movements in real-world scenarios.

OursDG-Mesh
Deformable


3DGS
SC-GS

Reference


view
4DGS

Figure 7. Qualitative results on guidance. Our approach captures
clearer structure compared to photorealistic reconstruction methods
despite not primarily aiming for accurate scene reproduction.

tends to produce overly detailed representations instead of
focusing on essential features. Although Suggestive Con-
tours generates more structured results, it requires meshes
for drawing, making it heavily rely on the quality of input

meshes. Additionally, the results tend toward detailed de-
piction rather than abstraction. In contrast, our approach
successfully represents movements in both fixed and moving
camera scenarios, while maintaining consistent structural
integrity throughout the motion sequence. The advantage of
our method becomes particularly evident in novel camera tra-
jectories, where it robustly preserves 3D structural features
across different viewpoints.

Figure 6 (b) shows our sketch representation’s robustness
to lighting conditions, a significant external factor that affects
frame RGB values. Liv3Stroke maintains consistent sketch
video generation while preserving core structure and motion,
even with varying lighting colors throughout the sequence.

In addition, our approach can also effectively represent
real-world scenarios as in Fig. 6 (c). It can capture various
objects and their movements. Despite the complexity of real-
world scenes, it preserves key structural characteristics of
each object. We highly recommend finding the supplement
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Figure 8. Ablation study on design choices in sketch reconstruction.

to see more results.
Meanwhile, Fig. 7 compares our point cloud reconstruc-

tion with other methods. We observe that 4DGS exhibits
noisy point distributions and Deformable 3DGS struggles
with overall structure preservation, particularly visible in the
elongated artifacts. While DG-Mesh demonstrates higher
performance in 3D shape reconstruction due to its mesh-
focused approach, it shows concentrated point distribution in
certain areas. Compared to these methods, our method suc-
cessfully maintains structural integrity during object motion
with uniform point distribution despite optimizing for image
intensity rather than realistic reconstruction objectives.

4.3. Ablation study

We further validate the details of our framework through
an ablation study. Figure 8 shows the qualitative results of
design choices in generating sketches.

As observed, directly optimizing strokes without guid-
ance leads to disconnected line segments that barely capture
the motion. Without coarse guidance, while the overall
shape is preserved, the output lacks coherent structure and
key features, such as wings of the bird. Our full framework
generates the most balanced results, maintaining global pos-
tures and fine details. Similarly, it is difficult to capture
the key motion when learning without Ls

temp. As shown in
Fig. 8, we observe unstable stroke variations in the gener-
ated sketches even when there are no changes between input
frames. Without Lreg, although motion dynamics are pre-
served, the model struggles to capture the essential structural
characteristics of the object. Compared to these results, our
complete model reconstructs sketches with the best struc-
tural representation and expresses stable movements, demon-
strating how each component contributes to the final sketch
quality.

Per-frame
Chamfer (↓)

Motion velocity
distance (×10−3) (↓)

w/o Lg
temp 0.258± 0.043 6.81± 5.41

w/o Lrigid 0.253± 0.048 5.45± 3.74
L2 in Lrigid 0.253± 0.045 4.61± 2.94

Ours (mask) 0.257± 0.049 4.12± 2.84
Ours (grayscale) 0.249± 0.039 4.41± 2.46

Liv3Stroke (Ours) 0.252± 0.049 4.16± 2.34

Table 2. Ablation study on generating motion guidance.

We also conduct an ablation study to analyze the effective-
ness of each component in our motion guidance generation
framework, as described in Sec. 3.2. Table 2 shows the
quantitative results measuring per-frame structure and mo-
tion velocity accuracy. Our full framework achieves the best
performance among the conditions related to terms in the
objective function. Without Lg

temp, the model shows de-
graded performance, especially in motion velocity distance
per time step, indicating the importance of temporal coher-
ence in extracting motion guidance. When removing Lrigid,
we observe similar performance in structural similarity but
decreased motion velocity accuracy. We can interpret this
that Lrigid helps capture consistent motion patterns. Using
L2 loss instead of our proposed Lrigid function shows a
slightly high motion velocity distance, demonstrating the
effectiveness of our rigid loss formulation. Furthermore, our
approach ensures the accuracy of both 3D structure and mo-
tion when using RGB images instead of masks or grayscale
frames. We provide more comparisons in Appendix.

5. Conclusion

In this work, we introduce Liv3Stroke, a novel approach
that bridges the gap between video analysis and motion
abstraction by representing 3D object movements through
dynamic stroke manipulation. Our method demonstrates
that diverse movements can be effectively represented with
sparse strokes by relocating and deforming them.

Looking forward, our work opens new possibilities for
understanding scene flow dynamics and estimating large-
scale motion fields, potentially advancing computer vision
and motion analysis domains. In addition, building on our
approach’s representation of motion through 3D strokes,
stroke-based physical control could be achieved by discretiz-
ing the dense field and designing functions that map physical
properties between strokes and the field.

Limitations Since we only consider view-independent
strokes, our approach cannot render view-dependent repre-
sentations such as a contour of the rounded object. We expect
to overcome these limitations by adopting view-dependent
strokes with superquadrics as proposed in 3Doodle [5].
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Ragan-Kelley. Differentiable vector graphics rasterization for
editing and learning. ACM Transactions of Graphics, 39(6):
193:1–193:15, 2020. 3

[24] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of
dynamic scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6498–
6508, 2021. 2

[25] Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker,
and Noah Snavely. Dynibar: Neural dynamic image-based
rendering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4273–4284,
2023. 1

9



[26] Isabella Liu, Hao Su, and Xiaolong Wang. Dynamic gaussians
mesh: Consistent mesh reconstruction from dynamic scenes.
In ICLR, 2025. 5, 6

[27] Yu-Lun Liu, Chen Gao, Andréas Meuleman, Hung-Yu Tseng,
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Recovering Dynamic 3D Sketches from Videos

Supplementary Material

A. Methodological Details
A.1. Point Cloud Rasterization

To rasterize the point cloud to an image plane in Sec. 3.2,
we first project the 3D points P3D = {Pi} onto the 2D
space P2D = {P̃i}. For each pair of i-th normalized grid
point and j-th point of the normalized point cloud P̂2D to
image dimensions, we use the Gaussian function to compute
a rendered intensity Jij :

Jij = exp (−
D2

ij

2σ2
j

), (13)

where Dij is the Euclidean distance between two points and
σj indicates the point size factor that controls the contribu-
tion area of each point.

We dynamically adjust σj based on the depth of the point
{dj} to account for perspective projection effects. Points
farther from the camera are rendered with smaller sizes,
following standard 3D rendering principles. Using the nor-
malized depth {d̂j} = { dj−dmin

dmin−dmax
}, each point size σj is

computed as:

σj =
µ

0.5µmin (W,H)
× d̂j × β, (14)

where µ and β denote the scaling and deblurring factor, and
W , H are the image width and height. We set µ = 10 and
β = 0.5.

We aggregate the Gaussian contributions from all point
cloud points to each grid point to generate the final rendered
image. The intensity value for each pixel is computed by
summing these contributions. We then normalize the in-
tensities by dividing by the maximum value, ensuring the
final image J ∈ RH×W values fall within an appropriate
range for visualization or processing. This process can be
expressed as the following equation:

Ji =

∑M
j=1 Rij

max(
∑M

j=1 Rij)
. (15)

The results can be shown in Figs. C and F. Note that each
guidance view in Fig. C is rasterized into a 100× 100 reso-
lution image, which represents the actual resolution used for
generating motion guidance in synthetic scenes.

A.2. Effect of the Suppression Function ξ(·)

As described in Sec. 3.3, we adjust the suppression func-
tion ξ(·) to prevent unintended stroke movements in sketch
synthesis. Figure A shows the effect of this function. We

Reference


views

O
u
rs

Figure A. Effectiveness of the function for suppression ξ(·). With-
out motion suppression, we observe noisy stroke movement at
different time steps (t1 and t2) even if there are no motions.
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Figure B. Network architecture. All networks in the framework
share the same architecture. Nout indicates the dimension of the
output, which is 4 in MR, and 3 in the others.

observe that the model struggles to suppress undesired stroke
movements even when no motion occurs. This demonstrates
that our full approach achieves higher performance in ex-
tracting core motions.

B. Implementation Details
B.1. Network Architecture

Our network architecture, illustrated in Fig. B follows a
consistent MLP structure across all components in Sec. 3.2
and 3.3, adopting a similar design to that proposed by [34].
Input is the concatenation of positional encoding of time
φt and positions φx, and each linear layer, except for the
final layer, outputs a 256-dimensional feature vector. The
network MR yields outputs in RN×4, while other networks
produce output vectors in RN×3. MR outputs quaternions
for each stroke’s rotation, which are subsequently converted
to rotation matrices for stroke deformation.
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Figure C. Different resolution through processing stages. Our
method gradually increases resolution according to stages to com-
pute the location and deformation of strokes.

B.2. Optimization Details

The learning parameters differ between reconstructing syn-
thetic datasets and real-world scenes. For synthetic scenes,
we set the frequency value L = 10 for both temporal and
spatial positional encoding. For real scenes presented in
Fig. 9, we use L = 8 for temporal and L = 10 for spatial
encoding. Learning rate values are also slightly different
in synthetic and real scenes. For the former, in drawing
process as described in Sec. 3.3, we apply a learning rate
of 5.0× 10−4 to MT and MR, and 1.0× 10−3 to all other
parameters. For the latter, during sketch reconstruction, we
apply a learning rate of 5.0× 10−4 to the canonical stroke
positions, 1.0 × 10−4 to MT and MR, and 2.5 × 10−4 to
ML. We set the learning rates lrpcd = 1.0 × 10−3 and
lrmlp = 5.0 × 10−4 to optimize the canonical point cloud
(i.e., the point cloud before network-based shifting) and the
motion guidance function detailed in Sec. 3.2 for all scenes.
In addition, during learning motion guidance, to embed core
motion information into the network, we initialize a canoni-
cal point cloud at t = 0 and reset the network parameters in
the middle of the process.

Meanwhile, our framework is structured to gradually in-
crease resolution as the optimization process progresses. As
shown in Fig. C, We initially obtain motion guidance at quar-
ter resolution of the target image size. Then, in the coarse
stage of sketch synthesis, we render strokes into a 50% of the
full resolution. We finally get moving sketches by optimiz-
ing the full resolution of the target frame size. For instance,
for synthetic scenes, we first learn guidance at 100 × 100
resolution and then optimize the per-stroke transformation
using 200× 200 frames. The final output produces sketch
frames at 400× 400 resolution.

Per-frame
Chamfer (↓)

Motion velocity
distance (×10−3) (↓)

4DGS† 0.286± 0.057 4.24± 2.71
Deformable 3DGS† 0.269± 0.071 4.01± 2.67
SC-GS† 0.289± 0.053 3.99± 2.65

Liv3Stroke (Ours) 0.252± 0.049 4.16± 2.34

Table A. Quantitative results of 3D motion guidance accuracy of
†GS-based works with filtering based on the opacity value.

time

Reference view 20 24 32 40

Figure D. The effects of using different numbers of strokes. When
reconstructing a sketch video, we allow users to set Nstrokes. More
strokes produce detailed sketches, while fewer strokes yield abstract
ones.

C. Additional Results
We provide results of all rendered synthetic scenes in Fig. F.
Compared to other existing works, our framework can rep-
resent diverse movements and key features of the view-
consistent structure directly from RGB video frames. We
visualize guidance views at the full target image resolution
for better clarity. We highly recommend finding videos in
the supplementary material to see the whole movement of
each scene.

C.1. Quantitative Results of the Motion Guidance

We present additional quantitative results of the motion guid-
ance that we obtained from Sec. 3.2 and filtered results of
GS-based dynamic reconstruction works [15, 44, 47] accord-
ing to the opacity value with a threshold of α = 0.5. Table A
and Tab. 1 (b) of the main paper shows our method’s capabil-
ity to capture meaningful 3D motion information, although
it does not pursue realistic reconstruction.

C.2. Results of Different Number of Strokes

We provide results to show the effect of the number of strokes
as in Fig. D. Like [5] and [41], we can control abstraction
levels of sketches by adjusting the number of curves. With
a higher number of strokes, we can capture more detailed
features, while fewer strokes result in more abstract repre-
sentations.

C.3. Limited Multi-View Information

We provide results under limited multi-view information in
varied conditions. From a frontal view, we captured frames
along a circular trajectory around the object, collecting 100
frames over an angle θ(◦) while maintaining a constant dis-
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Figure E. Results of limited multi-view information. (a) Experimental setup for data collection. We followed a circular path around the
object to capture frames, beginning from the frontal view (marked with a green arrow). (b) Results of the motion guidance and sketch under
different angles. Our approach can achieve 3D motion sketch representation with limited yet sufficient viewpoint information (θ ≥ 45), even
when the motion guidance exhibits noise, such as at θ = 45.

Method Novel views Fixed views
Motion Structure Motion Structure

CLIPasso 3.32 3.08 2.87 2.70
Sketch Video Syn. 2.66 2.64 3.93 3.77
Sugg. Contours 4.26 4.29 3.82 3.90

Liv3Stroke (Ours) 3.32 3.08 3.21 2.94

Table B. User study results. Note that “Motion” denotes the eval-
uation of how well the result describe the desired movement, and
“Structure” is the score of how well it contains key features of the
3D structure.

tance from the center. The detailed experimental setup is
visualized in Fig. E (a).

Our approach renders 3D sketches of the object in motion
with sparse yet adequate viewpoint information, as illustrated
in Fig. E (b). Additionally, we find that our method can
roughly capture the 3D key structure of the object even when
the motion guidance exhibits noise, such as at θ = 45.

C.4. User study

We provide a questionnaire to evaluate the perceptual impli-
cation of generated sketches. Participants rated the sketches
on a five-point scale (1-5), evaluating them from both novel
camera viewpoints and the fixed perspective. The rating
criteria were: (1) how effectively the sketch captures the
motion and (2) how well it conveys the 3D structure of the
target object.

Table B summarizes the answers of 44 participants. Over-
all, Suggestive Contours [6] achieves the highest scores
across all metrics, which can be attributed to its direct con-
tour extraction from 3D meshes, as illustrated in Fig. 6.
Unlike other methods that rely on image-based processing,
this approach results in higher evaluation scores. For novel
views, LiveStroke performs comparably with CLIPasso [41].
While Sketch Video Synthesis [50] has a higher score in

the fixed views, it struggles to effectively capture 3D geo-
metric features and motion characteristics when evaluated
from moving camera perspectives. LiveStroke exhibits only
minimal performance decrease when transitioning from the
novel perspectives to the fixed view, demonstrating con-
sistent performance regardless of the viewing perspective.
This stability distinguishes our approach from others, which
shows significant performance variations between different
viewpoints.
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Figure F. Results of synthetic scenes. Our approach can represent diverse motions by using view-consistent deformable 3D strokes.
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